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Using nonequilibrium renormalized perturbation theory, we calculate the conductance G as a function of
temperature T and bias voltage V for an Anderson model suitable for describing transport properties through a
quantum dot. For renormalized parameters that correspond to the extreme Kondo limit, we do not find a simple
scaling formula beyond a quadratic dependence in T and V. However, if valence fluctuations are allowed, we
find excellent agreement with recent experiments.
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Universality is one of the most beautiful and useful con-
cepts in physics. In general, the physical properties of a sys-
tem depend on a certain number of parameters which change
for different experimental realizations. However, in favorable
cases, physical observables are described by the same uni-
versal function once the different physical magnitudes are
scaled appropriately. For example, in the case of the tem-
perature dependence of the conductance through one quan-
tum dot G�T� in the limit of zero-bias voltage V, once a
characteristic energy scale TK �the Kondo temperature� is
identified, the conductance of different systems is very well
described by the same universal function G�T /TK� even if
the systems have very different TK.1,2 Scaling and universal-
ity are concepts which are quite naturally connected to
renormalization-group treatments of the Anderson model in
the Kondo regime �Coulomb repulsion U much larger than
the resonant level width ��, and in fact numerical
renormalization-group �NRG� calculations reproduce the
scaling mentioned above and in other physical properties.3,4

Theoretically, the situation is much more difficult in the
nonequilibrium situation which arises for a finite bias voltage
between the leads connected to the quantum dot in the ex-
periment. Only recently, extensions to the nonequilibrium
case of essentially exact techniques such as NRG �Ref. 5�
and exact Bethe ansatz6 were proposed, while approxima-
tions used at equilibrium have shortcomings when extended
to the nonequilibrium case.7 Nevertheless, using a Fermi-
liquid approach, based on perturbation theory �PT� in U /�,
and Ward identities, Oguri8 determined exactly the scaling
for T and eV small compared to TK for the Anderson model,

G�T,V� = G0�1 − cT� T

TK
�2

− �cT� eV

kTK
�2

+ ¯� , �1�

where G0=G�0,0� and the values of cT and � are discussed
below.

Recent experiments in GaAs quantum dots for different
situations in the nonequilibrium regime2 for low T and V
have found that G�T ,V� is well described by a universal
scaling function that extends Eq. �1� to higher temperatures,

G�T,V�
GE�T�

� 1 −
�cT�eV/kTK�2

1 + ��/� − 1�cT�T/TK�2 . �2�

Here cT�5.488 is fixed by Eqs. �1� and �3�, �
=0.10�0.015, �=0.5�0.1, and GE�T� is an empirical

�EMP� curve obtained from a fit to NRG results,

GE�T� =
G0

�1 + �21/s − 1��T/TK�2	s , �3�

with s=0.21 for an impurity with total spin S=1 /2. From
these equations, one can see that � is the ratio of the term of
order �eV / �kTK�	2 with respect to that of order of �T /TK�2 in
the decrease in the conductance, while � represents the effect
of terms �eV / �kTK�	2�T /TK�2n with integer n�1.

From an exactly solvable anisotropic Kondo model,9 one
extracts �=3 /�2�0.30 and �=2��TK /Ta�2 /cT
�3.60�TK /Ta�2, where Ta is an energy scale of the order of
TK. To our knowledge, no other precise information on �
exists.

The purpose of this work is to test the observed scaling
relation and calculate � in the impurity Anderson model us-
ing renormalized PT �RPT�.10 The basic idea of RPT is to
reorganize the PT in terms of fully dressed quasiparticles in a
Fermi-liquid picture. The main advantage is that even in the
strong-coupling �SC� limit U→�, for which ordinary PT in
u=U / ���� becomes invalid, the corresponding ratio be-
tween renormalized parameters �denoted by a tilde� becomes

ũ
 Ũ / ���̃�→1, being ũ�1 for finite U.10 For nontrivial

cases, already free quasiparticles �taking Ũ=0, which is
similar to slave bosons in a mean-field approximation11� re-
produce very well the low-frequency part of the equilibrium
spectral density at the quantum dot. An example is a case in

which the Kondo peak is split in two.11 Ũ �proportional to
the full vertex� represents the “residual” interaction between
quasiparticles. Calculating the renormalized retarded self-

energy 	̃r within nonequilibrium RPT up to second order in
ũ, T, and V leads to the exact result Eq. �1�.8,12 Here we

calculate numerically 	̃r up to order of ũ2 for finite kT and
eV but smaller or of the order of the Kondo energy kTK.

Ordinary PT up to second order in U supplemented by an
interpolative perturbative approach �IPA�13,14 �which corrects
the second-order result in order to reproduce exactly the
atomic limit U /�→ +�� has been shown to describe well
the conductance through a quantum dot for U
8�.15 The
results agree with those obtained using the finite temperature
density-matrix renormalization-group method.16 Comparison
of the spin-dependent IPA �Refs. 17 and 18� with exact di-
agonalization in finite systems shows very good agreement
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for U=6.25�.17 The extension of PT in U2 to the nonequi-
librium case was considered by Hershfield et al.19 They
found that for finite V, the current is conserved only in the
electron-hole symmetric Anderson model �SAM�. Different
self-consistent approaches were proposed to overcome this
shortcoming by a suitable election of the unperturbed
Hamiltonian.7,13 While these approaches work well in ab-
sence of a magnetic field B, numerical difficulties persist for
small nonvanishing B and V.7 Here we will take B=0 and
parameters corresponding to the SAM for our numerical in-
tegrations. In this case the current is conserved for each spin
without the need to solve self-consistent equations.7

We use the spin-1/2 Anderson model to describe a quan-
tum dot interacting with two conducting leads �one at the left
and one at the right� with chemical potentials �L and �R,
respectively, with �L−�R=eV. We define the zero of energy
by �L=eV�R /�, where �=�L+�R and ��=��k�Vk��2
��−�eff

� � �neglecting here the small7 dependence on ��. The
Hamiltonian is split into a noninteracting part H0 and a per-
turbation H� as

H = H0 + H�,

H0 = �
k��

�k�ck��
† ck�� + �

�

�eff
� nd� + �

k��

�Vk�ck��
† d� + H.c.� ,

H� = �
�

�Ed − �eff
� �nd� + Und↑nd↓, �4�

where �=L ,R refers to the left and right leads. In general �eff
�

should be determined self-consistently; but for the SAM with
B=0, �eff

� =0.7 We obtain the conductance G=dI /dV from
numerical differentiation of the current I, which can be writ-
ten as20

I =
2e

h
 d�A�������fL��� − fR���	 , �5�

where f����= f��−���, f���=1 / �e�/kT+1�, A=4�L�R /�2

indicates the degree of asymmetry of the hybridization of the
dot with both leads, and ����=−Im Gd�

r ��� /�, where
Gd�

r ��� is the retarded Green’s function of the electrons at
the dot for spin �, which can be written as7

Gd�
r ��� =

1

� − �eff
� + i� − 	�

r ���
. �6�

Within RPT, the low-frequency part of Gd�
r ��� can be ap-

proximated as10

G̃d�
r ��� �

z

� − �̃eff
� + i�̃ − 	̃�

rem���
, �7�

where z= �1−�	�
r /��	−1, �̃eff

� =z��eff
� +	�

r �0�	, �̃=z�, and

	̃�
rem���=z	�

rem���, where the remainder retarded self-energy
is defined as

	�
rem��� = 	�

r ��� − 	�
r �0� − � � 	�

r /�� . �8�

In Eqs. �7� and �8�, 	�
r �0� and �	�

r /�� are evaluated at �
=T=V=0. A comparison between Gd�

r ��� �calculated within

PT� and G̃d�
r ��� with 	̃�

r ���=0 for a case with nontrivial
frequency dependent ���� is provided in Ref. 11, showing a
very good agreement for low ���. For large values of U /�,
ordinary PT in U is not reliable and z is in principle not
known although it can be obtained from exact Bethe ansatz

calculations. However, replacing � by �̃ /z in Eq. �5�, z can-
cels and the current is expressed in terms of renormalized

parameters �̃eff
� , �̃, and 	̃�

rem���. In the SC limit U /�→�,
Hewson10 showed that the ratio of renormalized parameters

is ũ= Ũ / ���̃�=1, and furthermore, defining the Kondo tem-
perature TK

C by the linear term in the specific heat in this limit

�C=�2k / �6TK
C�, one obtains �̃=4kTK

C /�. In the SAM at B
=0, which we shall use, �L=�R, Ed=−U /2, and this implies
�̃eff

� =0.11 Experimentally, �L��R and the scaling results do
not depend on the gate voltage, which controls Ed. Further-
more, the value of Ed is irrelevant in the SC limit. This
justifies the use of the SAM. Finally we use

	̃�
rem��� = 	̃�

r ��� − 	̃�
r �0� − � � 	̃�

r /�� , �9�

where 	̃�
r ��� is obtained using nonequilibrium PT up to sec-

ond order in ũ. Details of the nonequilibrium RPT were pub-
lished in previous works.8,12 The second-order diagram has

two sums over Matsubara frequencies. For �̃ independent of
frequency, one of the sums can be done analytically, which
simplifies the numerical evaluation. Explicit expressions for
the retarded and lesser self-energies are given in the Appen-

dix of Ref. 7. It is known21 that �	̃�
r /��=−�3−�2 /4�ũ2.

We begin by analyzing the case ũ=1, which corresponds
to the SC limit U→�. As in the experiment,2 we obtain TK
by a fit of the temperature dependence of the conductance for
V=0 to Eq. �3� for T /TK�0.25. In Fig. 1 we compare Eq. �3�
with our result. The fit is very good for low T /TK, while for
T /TK�1, our result lies below the empirical curve. Remark-
ably, this is also the case of the experimental results.2 This
deviation, however, is outside the region of the fit and is
irrelevant in the following discussion. From the fit we obtain

kTK=0.757�̃. The exact results to order T2 and V2 can be
written in the form8

0.1 1
T/T

K

0.01

0.1

1−
G

/G
0

EMP
RPT

FIG. 1. Conductance shift for V=0 as a function of temperature
for ũ=1. Dashed line corresponds to the EMP curve �Eq. �3�	.
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G

G0
� 1 −

�2�1 + 2ũ2�
3 � kT

�̃
�2

−
2 + �1 + 9A�ũ2

8 � eV

�̃
�2

.

�10�

A comparison with the expansion of Eq. �3� �for V=0� up to
second order in T leads to

kTK

�̃
=

3s�21/s − 1�
�2�1 + 2ũ2�

, �11�

which for ũ=1 implies TK=0.746�̃ /k=0.949TK
C. The small

discrepancy with the value kTK=0.757�̃ obtained from the
fit is due to the finite temperature interval used for fitting.

Next we calculate the conductance G=dI /dV for finite T
and V by numerical differentiation of Eq. �5� and compare
the results with Eqs. �2� and �3�. To obtain � we have fitted
the current to a polynomial with odd powers of V up to
V3 within the range 0
eV /kTK
0.4 as in the experiments.
Inclusion of terms of order V5 practically does not modify
the results. The resulting shift in the conductance
�1−G /GE�T�	 /�V scaled as in the experimental work with
�V=�cT / �1+ �� /�−1�cT�T /TK�2	 is shown in Fig. 2.

From the fit for T=0 we obtain �=0.151. This agrees with
Eq. �10�, which predicts in the symmetric case �A=1� �see
Eq. �1�	 �=3 / �2�2�=0.152 for ũ=1. The small discrepancy
is probably due to numerical errors in the integration near the
singularities of the integrand.7 The effect of temperature in
the voltage dependence does not follow the scaling observed
experimentally. Furthermore, the exponents � that we obtain
for different temperatures are in the range of 2.4�0.2, much
larger than the experimentally reported �=0.5�0.1. In addi-
tion, while the quadratic scaling with V was expected, for
most cases the observed exponent �=0.10�0.015 is smaller
than the value �SC

SAM=3 / �2�2� of the SAM in the SC limit
U→�. Note, however, that for some of the measured sys-
tems � approaches this value �Fig. 3 of Ref. 2 for
VG�−0.195 mV�. In addition, in comparison with other the-
oretical predictions for �, 3 /�2 �Ref. 9�, 3 / �8�2� �Ref. 22�,
and 4 /�2 �Ref. 23�, the above value of � lies closer to ex-

periment. However, it is clear that the Anderson model in the
SC limit is not able to reproduce quantitatively the experi-
ment.

In principle, a value of ���SC
SAM can be obtained in two

ways: increasing the asymmetry between the leads �decreas-
ing A=4�L�R / ��L+�R�2	 or decreasing U and with it ũ.
From Eq. �10�, one sees that keeping ũ=1, �=0.1 is obtained
for A=0.54, corresponding to a ratio of 5.2 between both ��.
In the experiment, it is reported that the two couplings are
kept nearly equal. In addition the magnitude of G in the
equilibrium limit �Fig. 1�c� of Ref. 2	 suggests that A�0.8
�see Eq. �5�	. Therefore, this explanation seems unlikely.

We explore the second possibility within the SAM but
allowing finite U and therefore ũ�1. This means that while
the average occupation of the dot is kept at the same value
�n=1 in the SAM�, some charge fluctuations with the neigh-
boring configurations are allowed. From Eqs. �1� and �10�
one sees that �=0.1 implies ũ=0.365. We have repeated the
calculations for this value of ũ. The conductance as a func-
tion of temperature is displayed in Fig. 3. We see that in this
case, our result lies even closer to the phenomenological
curve, indicating that the effect of temperature beyond T2 is
well described by our approximation �which assumed ũ in-
dependent of T and V�. Proceeding with the fit as in the
experiment, we obtain TK=1.159�̃, while Eq. �11� gives

TK=1.147�̃ /k=1.461TK
C.
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FIG. 2. �Color online� Scaled conductance shift as a function of
bias voltage for different temperatures and ũ=1.
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FIG. 3. Conductance shift for V=0 as a function of temperature
for ũ=0.365. Dashed line corresponds to Eq. �3�.
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FIG. 4. �Color online� Scaled conductance shift as a function of
bias voltage for different temperatures and ũ=0.365.
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In Fig. 4 we show the scaled shift in the conductance �1
−G /GE�T�	 /�V �see Eq. �3�	 for ũ=0.365 as a function of the
applied voltage for several temperatures. Remarkably, now
all curves lie very close for eV�0.5kTK in agreement with
experiment �Fig. 4�b� of Ref. 2	. Furthermore, the value of �
that we find proceeding in the same way as in the experiment
is �=0.52�0.02, in excellent agreement with it.

The reader might wonder if different physical situations in
which the Kondo temperature can vary within a factor 2 are
consistent with similar values of the renormalized ratio

ũ= Ũ / ���̃�. In fact, while the Kondo temperature decreases
exponentially by increasing the ratio of the bare parameters
u=U /��, ũ increases much slower,8,10 being of course
ũ�u for small u �including u�0.4� and saturating at ũ=1,
for u→�.

Finally, we note that if Eq. �1� with arbitrary exponents is
used to fit the conductance with finite voltage and tempera-

ture ranges,2 the resulting exponents are slightly below 2, in
agreement with experiment.2

In summary, using nonequilibrium renormalized perturba-
tion theory up to second order in the renormalized perturba-
tion parameter ũ for the Anderson model in the symmetric
case, we have examined the scaling behavior of the conduc-
tance, including terms beyond those quadratic in temperature
and bias voltage. In the strong-coupling limit, the model pre-
dicts an effect of voltage which is 50% higher than observed
and the effects of terms of order �VT�2 strongly disagree with
experiment. If instead an important degree of valence fluc-
tuations is allowed, we obtain an excellent agreement with
recent experimental results.
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